مفاهیم پایه ای مدارهای مغناطیسی
میدان مغناطیسی:
میدان مغناطیسی خاصیتی است در فضای اطراف مواد مغناطیسی یا بارهای متحرک و یا میدان الکتریکی متغیر که بر روی مواد مغناطیسی یا بارهایی که در این فضا قرار میگیرند تاثیر می گذارد. میدان مغناطیسی یک کمیت برداری است. به همین منظور می توان میدان مغناطیسی هر نقطه از فضا را با یک مقدار و یک جهت تعیین کرد. میدان مغناطیسی را با حرف اختصاری H نشان می دهند که یک کمیت برداری است و به آن شدت میدان مغناطیسی نیز می گویند. میدان مغناطیسی را با خطوط میدان نشان می دهند. به نحوی که هرجا خطوط به هم نزدیکتر شدند یعنی میدان در آنجا قویتر است.
چگالی شار مغناطیسی:
به میزان خطوط میدان مغناطیسی که از یک سطح خاص عبور می کنند شار مغناطیسی گویند و آن را با علامت Φ نشان می دهند و یک کمیت عددی است و واحد آن وبر (Wb) است. شار عبوری از واحد سطح چگالی شار مغناطیسی نام دارد که آن را با علامت B نشان می دهند و واحد آن تسلا (T) است. چگالی شار مغناطیسی یک کمیت برداری است. رابطه H، B و Φ به این صورت است:
که A بردار سطح مورد نظر و μ ضریب نقوذپذیری مغناطیسی است.
ضریب نفوذپذیری مغناطیسی:
ضریب نفوذپذیری مغناطیسی یا ضریب (ثابت) تراوایی مغناطیسی رابطه بین چگالی شار مغناطیسی (B) و شدت میدان مغناطیسی (H) را بیان می کند. در واقع مقدار شیب منحنی B-H اجسام است (با این منحنی در مقاله مواد مغناطیسی بیشتر آشنا می شویم). این ضریب برای مواد مختلف متفاوت است. هرچه مقدار این ضریب بیشتر باشد ماده موردنظر خاصیت مغناطیسی بیشتری دارد و اگر آن ماده در معرض میدان مغناطیسی قرار بگیرد، تمرکز شارهای میدان در آن ماده بیشتر خواهد بود. به همین دلیل مقدار این ضریب معیاری است برای تعیین مقدار خاصیت مغناطیسی اجسام.
ضریب نفوذپذیری مغناطیسی نسبی و خلا:
ضریب نفوذپذیری مغناطیسی مواد، عددی بسیار کوچک است. برای آسان تر کردن انجام محاسبات، ضریب تراوایی یکی از مواد را به عنوان ثابت پایه درنظر گرفته و ضریب بقیه مواد را نسبت به آن بیان می کنیم و به آن ضریب نفوذپذیری مغناطیسی نسبی می گوییم و آن را با μr نشان می دهیم. این ماده پایه خلأ است. ضریب تراوایی خلأ برابر با ۴π×۱۰-۷ است و آن را با μ۰ نشان می دهیم. بنابراین وقتی می گوییم ضریب تراوایی نسبی ماده ای ۲۰۰۰ است منظور این است که ضریب تراوایی آن ۲۰۰۰ برابر ضریب تراوایی خلأ است.
مقاومت مغناطیسی:
مقاومت مغناطیسی یا رلوکتانس کمیتی است که برای مدارهای مغناطیسی مورد استفاده قرار می گیرد. این کمیت در واقع بیان گر مقاومت مواد در برابر عبور شار مغناطیسی از میان آن ها است. در واقع زمانی که می خواهیم یک ساختار مغناطیسی را با یک مدار الکتریکی مدل کنیم، شار مغناطیسی را با جریان الکتریکی و مقاومت مغناطیسی را با مقاومت الکتریکی جایگزین می نماییم.
مقاومت مغناطیسی از رابطه زیر به دست می آید.
که در آن lc طول مسیر شار در جسم مغناطیسی، μr ضریب نفوذپذیری نسبی جسم، μ۰ ضریب نفوذپذیری مغناطیسی خلا و Ac سطح مقطع موثر جسم است.
نیروی محرکه مغناطیسی:
همانطور که در یک مدار جهت ایجاد جریان نیاز به یک نیروی محرکه الکتریکی (ولتاژ) است، در یک مـدار مغناطیسی نیز جهت ایجاد شار مغناطیسی نیاز به نیروی محرکه مغناطیسی می باشد. نیروی محرک مغناطیسی به هر گونه نیروی محرک فیزیکی گفته میشود که شار مغناطیسی تولید میکند. نامگذاری نیروی محرک مغناطیسی بر پایهی مشابه بودن نقش آن در مدارهای مغناطیسی با نقش نیروی محرک الکتریکی در مدارهای الکتریکی است.
نیروی محرکه مغناطیسی را با F نشان می دهند که رابطه زیر برای آن برقرار است.
نیروی محرکه ای که یک سیم پیچ با تعداد دور N که جریان I از آن عبور می کند از رابطه زیر محاسبه می گردد.
فاصله هوایی:
در برخی موارد که مقاومت مغناطیسی یک مسیر کم است و ما می خواهیم به دلیل ملاحظات طراحی آن را زیاد کنیم، در مسیر شار یک فاصله هوایی کوچک ایجا می کنیم. چون ثابت تراوایی هوا نسبت به مواد مغناطیسی بسیار کم است، این فاصله هوایی باعث افزایش مقاومت مغناطیسی مسیر می گردد. با تنظیم طول این فاصله هوایی می توان مقدار رلوکتانس مسیر را به مقدار دلخواه رساند. البته برخی هسته ها جهت کاربردهای خاص این فاصله هوایی را در ساختار خود دارند.
مدار مغناطیسی:
برای آسان تر شدن تحلیل یک ساختار مغناطیسی متشکل از سیم پیچ، هسته و فاصله هوایی، آن را با المان های الکتریکی جایگزین می کنند. به مدار الکتریکی حاصل، مدار مغناطیسی می گویند. تحلیل یک مدار الکتریکی بسیار آسان تر از یک ساختار مغناطیسی است. برای ساخت مدار مغناطیسی ، رلوکتانس های مسیر شار را با مقاومت الکتریکی، شار مغناطیسی را با جریان الکتریکی و نیروی محرکه مغناطیسی را با منبع ولتاژ مدل می کنند. با این مدلسازی می توان روابط مغناطیسی را با روابط مداری KVL و KCL جایگزین کرد. پس از تحلیل مدار الکتریکی معادل، می توان دومرتبه با استفاده از روابط تبدیل، مقادیر پارامترهای مغناطیسی را استخراج کرد.