تحقیق درباره برق
برق
برق یا نیروی کهربایی یا الکتریسیته،(به یونانی: ήλεκτρον)، مجموعهای از پدیدههای طبیعیست که به حضور و جریان بار الکتریکی وابسته است. الکتریسیته آثار معروف متنوعی چون آذرخش، الکتریسیته ساکن، القای الکترومغناطیسی و جریان الکتریکی دارد. به علاوه، الکتریسیته اجازه تولید و دریافت تابشهای الکترومغناطیسی مانند موجهای رادیویی را فراهم میآورد.
در الکتریسیته، بارهای الکتریکی میدانهای الکترومغناطیسی را تولید میکنند و این میدانها سایر بارها را تحت تأثیر قرار میدهند. الکتریسیته به چند دلیل مختلف فیزیکی اتفاق میافتد:
- بار الکتریکی: خاصیت برخی ذرات زیراتمی که فعل و انفعالات الکترومغناطیسی آنان را مشخص میکند. مواد باردار، میدان الکترومغناطیسی تولید میکنند و همچنین تحت تأثیر سایر میدانها قرار میگیرند.
- میدان الکتریکی (الکترواستاتیک را ببینید): یک نوع ساده از میدانهای الکترومغناطیسی است که به وسیله بار الکتریکی ساکن یا متحرک تولید میشود. میدان الکتریکی به بارهای مجاور خود، نیرو وارد میکند.
- پتانسیل الکتریکی: ظرفیت یک میدان الکتریکی برای انجام کار بر روی یک بار الکتریکی که واحد آن ولت است.
- جریان الکتریکی: حرکت یا جریان [ذرات باردار] که واحدش آمپر است.
- آهنربای الکتریکی: بارهای متحرک یک میدان مغناطیسی تولید میکنند. جریانهای الکتریکی میدانهای مغناطیسی تولید میکنند و میدانهای مغناطیسی متغیر جریانهای الکتریکی تولید میکنند.
در مهندسی برق از الکتریسیته برای این منظورها استفاده میشود:
- توان الکتریکی: استفاده از جریان الکتریکی برای تأمین انرژی وسایل برقی را گویند.
- الکترونیک: در حالی که با مدارهای الکتریکی در ارتباط است، شامل اجزای فعال الکتریکی از جمله لامپهای خلأ، ترانزیستورها، دیودها و مدارهای مجتمع میباشد.
پدیدههای الکتریکی از گذشته دور مورد مطالعه قرار گرفتهاند، اما پیشرفت در درک نظری تا قرنهای هفدهم و هجدهم به آرامی اتفاق افتاد. حتی آن زمان نیز کاربرد الکتریسیته اندک بود، و این موضوع تا اواخر قرن نوزدهم و زمانی که مهندسان قادر به استفاده از برق در مناطق صنعتی و مسکونی شوند، ادامه یافت. پیشرفت سریع در تکنولوژی الکتریکی صنعت و جامعه را دگرگون ساخت. کاربرد گسترده الکتریسیته سبب شد که از آن در موارد کاربردی بدون محدودیت شامل حمل و نقل، گرمایش، روشنایی، مخابرات و محاسبات استفاده شود. اکنون الکتریسیته پایههای جامعه صنعتی مدرن را تشکیل میدهد.
تاریخچه
الکتریسیته برگرفته شده از کلمه الکتروکوس است که نام یونانی کهربا است، که با مالش آن قادر به جذب ذرات ریز است.
خیلی قبلتر از هر اطلاعی از الکتریسیته، مردم از شوکهای ماهیهای الکتریکی آگاهی داشتند. در نوشتههای مصریان باستان که از سده ۲۸ (پیش از میلاد) باقی ماندهاند، نام اینگونهها را تندرگرهای نیل گذاشتند، و آنها را محافظ سایر ماهیها میدانستند. هزاران سال قبل، ماهیهای [الکتریکی] به وسیله یونان باستان، امپراطوری روم و فلاسفه و پزشکان عربی گزارش شد. چند نویسنده باستانی، مانند پلنیوس و اسکریبونیوس لارگوس به وجود تأثیرات بیحسکننده شوکهای الکتریکی ناشی از گربهماهیهای الکتریکی و سپرماهیسانان گواهی دادند، و دریافتند که این شوکها به وسیله اشیای هادی انتقال مییابند. به بیمارانی که از بیماریهایی چون نقرس یا سردرد رنج میبردند، توصیه میشد که ماهی الکتریکی را لمس کنند تا شاید نیرو قدرتمندش آنها را درمان کند. تاریخ الکتریسیته به ایران و بینالنهرین باستان در دوره اشکانیان برمیگردد و اولین باتری اختراع شده را به اشکانیان نسبت میدهد که به خاطر محل یافتنش به باتری بغدادی شهرت یافتهاست. اولین و نزدیکترین روش کشف برای شناسایی آذرخش و الکتریسیته، به اعراب نسبت داده میشود، که قبل از قرن ۱۵ام، واژه عربی «رعد» را به آذرخش اطلاق کردند.
الکتریسیته تا سال ۱۶۰۰ به مدت چند هزار سال تنها به عنوان یک کنجکاوی ذهنی قلمداد میشد، تا اینکه ویلیام گیلبرت، دانشمند انگلیسی، مطالعات دقیقی پیرامون الکتریسیته و مغناطیس انجام داد. او تأثیر سنگ آهنربا را به وسیله مالش کهربا شناسایی کرد. او واژه electricus را به خاصیت جذب اجسام کوچک، پس از مالش، نسبت داد. پس از این رویداد، واژه الکتریسیته و الکتریکی برای اولین در کتاب سیودودکسیا اپیدمیکا، نوشته توماس براون چاپ شد.
بعدها افرادی چون اتو فن گریکه، رابرت بویل، استفن گری و چارلز فرانکویس این مسیر را ادامه دادند. در قرن ۱۸ام، بنجامین فرانکلین تحقیقات گستردهای پیرامون الکتریسیته انجام داد. او با فروش داراییهای خود، هزینه کارش را فراهم کرد. مشهور است که او در سال ۱۷۵۲ یک کلید فلزی را به انتهای یک بادبادک مرطوب وصل کرد و آن را در آسمان طوفانی به هوا فرستاد. جرقههای متوالی که از کلید به پشت دستش میپریدند، نشان دادند که آذرخش قطعاً پدیدهای الکتریکی در طبیعت است. او همچنین رفتار ظاهراً متناقض بطری لیدن را به عنوان وسیلهای برای ذخیره مقادیر زیاد بار الکتریکی توصیف کرد.
در سال ۱۷۹۱، لوییجی گالوانی اکتشاف خود در زمینه بیوالکتریک را منتشر کرد. او نشان داد که الکتریسیته واسطه ایست که به وسیله آن سیگنالها از یاختههای عصبی به ماهیچهها انتقال مییابند. در قرن ۱۸ام، باتری الساندرو ولتا، یا پیل ولتایی، که از روی هم قرار گرفتن لایههای متناوب روی و مس ساخته شده بود، برای دانشمندان منبع انرژی قابل اعتمادتری نسبت به ژنراتورهای الکترواستاتیکی قدیمی فراهم کرد. کشف الکترومغناطیس، یا همان وحدت پدیدههای الکتریکی و مغناطیسی، بین سالهای ۱۸۱۹–۱۸۲۰ به وسیله هانس کریستین اورستد و آندره ماری آمپر اتفاق افتاد. در سال۱۸۲۱، مایکل فارادی موتور الکتریکی را اختراع کرد و در سال ۱۸۲۷ گئورگ زیمون اهم جریانهای الکتریکی را از نظر ریاضی مورد بررسی قرار داد. در سالهای ۱۸۶۱ و ٬۱۸۶۲جیمز کلرک ماکسول در کتاب دربارهٔ خطوط فیزیکی نیرو، الکتریسیته و مغناطیس را بهطور قطعی به هم مرتبط ساخت.
درحالی که در اوایل قرن ۱۹ام، پیشرفتهای سریعی در برق اتفاق افتاد، اواخر قرن ۱۹ام، شاهد بزرگترین پیشرفت در مهندسی برق بود. با تلاش افرادی چون الکساندر گراهام بل، اتو بلاثی، توماس ادیسون، گالیله فراری، الیور هویساید، انیوس جدلیک، چارلز آلگرنون پارسونز، ویلیام تامسون، ارنست فون زیمنس، جوزف سوان، نیکولا تسلا و جرج وستینگهاوس، الکتریسیته از حس کنجکاوی علمی به ابزاری مهم در زندگی مدرن و نیروی محرکی برای انقلاب صنعتی دوم تبدیل شد.
در سال ٬۱۸۸۷ هاینریش هرتز الکترودهایی را کشف کرد که وسیله پرتوی فرابنفش روشن میشدند و جرقههای الکتریکی را به سادگی ایجاد میکردند. در سال ٬۱۹۰۵ آلبرت اینشتین مقالهای منتشر کرد که در آن با توصیف دادههای آزمایشگاهی، اثر فوتوالکتریک را به عنوان نتیجه انرژی نور نشان داد و ثابت کرد که این انرژی به وسیله بستههای کوانتمی، حمل میشود و به الکترونها انرژی میدهد. این اکتشاف منجر به انقلاب کوانتمی شد. اینشتین در سال ٬۱۹۲۱ به خاطر کشف اثر فوتوالکتریک جایزه نوبل فیزیک گرفت. امروزه، از اثر [فوتوالکتریک] در حسگرهای نور و در نتیجه صفحههای خورشیدی استفاده میشود که اخیراً برای تولید الکتریسیته در سطح تجاری به کار میروند.
اولین وسیله حالت جامد ردیاب سبیل گربهای بود که برای اولین بار در دهه ۱۹۳۰ در گیرندههای رادیویی به کار رفت. یک سیم سبیل گربهای به یک بلور جامد (مانند بلور ژرمانیوم) متصل است تا با استفاده از تأثیر نقطه تماس، یک سیگنال رادیویی را شناسایی کند. در جز حالت جامد، جریان الکتریکی به عناصر و ترکیبات جامد وابسته است که به منظور پر کردن کاستی الکترونهاست که حفره الکترونی نامیده میشود. مفهوم حفرههای خالی و پر با توجه به فیزیک کوانتومی قابل درک است. ماده سازنده نیز اغلب یک نیمرسانا بلوریست.
وسایل حالت جامد با اختراع ترانزیستور در سال ۱۹۴۷، ارتقا یافتند. وسایل حالت جامد رایج عبارتند از: ترانزیستورها، تراشههای ریزپردازنده و حافظه دسترسی تصادفی. نوع ویژهای از حافظهها که حافظه فلش نام دارد در یواسبی فلش درایوها به کار میروند و به تازگی، درایوهای حالت جامد جایگزین سیستم چرخش مکانیکی دیسک مغناطیسی در دیسک سخت شدهاست. وسایل حالت جامد در دهههای ۱۹۵۰ و ۱۹۶۰ محبوبیت فراوانی کسب کردند، که مصادف با تغییر از تکنولوژی لامپ خلاء به دیودهای نیمرسانا، ترانزیستورها، مدار مجتمع و الئیدی بود.
مفاهیم
بار الکتریکی
وجود بار الکتریکی سبب افزایش نیرو الکترواستاتیکی میشود: بارها به یکدیگر نیرو اعمال میکنند، نیرویی که در گذشته شناخته شده ولی علتش نامعلوم بود. یک گوی سبک که از یک نخ آویزان است، هنگام تماس با میله شیشهای باردار که تحت مالش با پارچه قرار گرفته، میتواند باردار شود. اگر گوی دیگری نیز با همان میله شیشهای باردار شود، گوی قبلی را دفع میکند: بار تلاش میکند تا دو گوی را از هم دور کند. دو گوی باردار شده به وسیله میله پلاستیکی نیز یکدیگر را دفع میکنند. اما، اگر یک گوی به وسیله میله شیشهای و گوی دیگر به وسیله یک میله پلاستیکی باردار شود این دو گوی یکدیگر را جذب میکنند. شارل آگوستن دو کولن این پدیده را در قرن هیجدهم کشف کرد. او استنباط کرد که بار الکتریکی خود را به دو شکل نمایان میکند. این کشف به قانون مشهوری منجر شد: اجسام با بار همنام یکدیگر را دفع و اجسام با بار غیر همنام یکدیگر را جذب میکنند.
این نیرو ذرات باردار را تحت تأثیر قرار میدهد، بنابرین بار تمایل دارد تا جای امکان بهطور مساوی در یک سطح هادی پخش شود. اندازه نیرو الکترومغناطیسی، چه جاذبه باشد و چه دافعه، با استفاده از قانون کولن بدست میآید. مطابق این قانون، نیرو با حاصلضرب بار دو ذره در مجذور معکوس فاصله بین آن دو متناسب است. نیروی الکترومغناطیس بسیار نیرومند است و در واقع بعد از نیروی هستهای قوی، نیرومندترین نیرو بهشمار میآید، اما بر خلاف آن این نیرو در تمام فواصل اعمال میشود. در مقایسه با نیروی گرانش، نیرو الکترومغناطیسی که دو الکترون را دفع میکند، ۱۰۴۲ بار قویتر از نیروی جاذبه گرانشی بین آن دو است.
مطالعات نشان میدهند که منشأ بار انواع مخصوصی از ذرات زیراتمی هستند که ویژگی بار الکتریکی را دارند. بار الکتریکی سبب تقویت نیروی الکترومغناطیسی میشود، که یکی از چهار نیروی بنیادی به حساب میآید. آشناترین حاملان بار الکتریکی الکترونها و پروتونها هستند. تحقیقات حاکی از وجود قانون بقای بار الکتریکی هستند و این بدان معناست که در یک سیستم ایزوله بدون توجه به هر تغییری که در سیستم روی دهد، مقدار بار کلی آن ثابت میماند. در یک سیستم ممکن است بار از جسمی به جسم دیگر منتقل شود که این اتفاق میتواند به صورت تماس مستقیم باشد، یا با عبور از یک ماده رسانا مانند سیم، روی دهد. واژه الکتریسیته ساکن به وجود بار روی یک جسم، گفته میشود که اغلب هنگام مالش در ماده غیرهمسان به یکدیگر ایجاد میشود و بار از یکی به دیگری انتقال مییابد.
بار الکترون و پروتون مخالف همند، بنابرین مقدار بار ممکن است مثبت یا منفی باشد. طبق قرارداد باری که به وسیله الکترونها حمل میشود منفی و باری که به وسیله پروتونها حمل میشود مثبت است، این موضوع از تلاشهای بنجامین فرانکلین سرچشمه گرفتهاست. اندازه بار را با علامت Q نشان میدهند که واحدش کولن است. هر الکترون حدوداً بار −۱٫۶۰۲۲×۱۰−۱۹ کولن را حمل میکند. بار پروتون نیز معادل الکترون بوده ولی علامتش مثبت میباشد، یعنی ۱٫۶۰۲۲×۱۰−۱۹ کولن. بار تنها به وسیله ماده جذب نمیشود، بلکه در پادماده نیز، هر پادذره باری هم اندازه و مخالف ذره مربوطهاش تحمل میکنند.
بار را میتوان به وسیله ابزار گوناگونی سنجید، یک ابزار جدید برای سنجش بار الکتروسکوپ نام دارد، که اگرچه هنوز در کلاسهای درسی به کار میرود، جایگزین برق سنج الکترونیکی شدهاست.
جریان الکتریکی
حرکت بارهای الکتریکی را جریان الکتریکی گویند که شدت آن با واحد آمپر سنجیده میشود. جریان میتواند شامل حرکت هر ذره بارداری باشد؛ که اکثراً الکترونها هستند ولی هر بار در حال حرکتی، یک جریان به حساب میآید.
مطابق قرارداد تاریخی، جریان مثبت مسیری را که هر بار مثبت شامل شدهای طی کند، میپیماید یا از مثبتترین بخش یک مدار به منفیترین بخشش انتقال مییابد. جریانی که از این الگو پیروی کند، جریان قراردادی نام دارد. بنابرین حرکت الکترونهای دارای بار مخالف در یک مدار الکتریکی، یکی از آشناترین اشکال جریان، در خلاف جهت حرکت الکترونها، مثبت فرض میشود. اما، بر اساس شرایط، یک جریان الکتریکی میتواند شامل یک جریان از ذرات باردار، هم در یک مسیر و هم در هر دو مسیر باشد. قرارداد مثبت به منفی برای سادهسازی این شرایط وضع شدهاست.
فرایندی که در آن جریان الکتریکی از مواد عبور میکند با واژه رسانایی الکتریکی مورد استفاده قرار میگیرد، و طبیعت آن با ذرات باردار و مادهای که به وسیله آن جابجا میشوند، متفاوت است. مثالهایی برای جریان الکتریکی شامل رسانای فلزی، که الکترونها در رسانایی مانند فلزات جریان مییابند و برقکافت میشود، که در آن یونها (اتمهای باردار) در مایعات یا پلاسماهایی مانند جرقههای الکتریکی جریان مییابند. در حالی که ذرات به خودی خود کندند، و گاهی اوقات با سرعت رانش میانگین یک میلیمتر در ثانیه پیش میروند، میدان الکتریکی که آنها را پیش میبرد، سرعت آنها را به نزدیکی سرعت نور میرساند و سیگنالهای الکتریکی را قادر میسازد که با سرعت سیمها را بپیمایند.
جریان دارای چند تأثیر قابل مشاهده است که بهطور تاریخی ابزاری برای شناسایی وجودش بهشمار میرود. جریان میتواند آب را تجزیه کند و این موضوع در سال ۱۸۰۰ به وسیله ویلیام نیکولسون و آنتونی کارلیسله کشف شد و امروزه آن را با نام برقکافت میشناسیم. در سال ۱۸۳۳، مایکل فارادی راه آنان را به خوبی ادامه داد. جریان در یک مقاومت الکتریکی سبب تجمع گرما در مقاومت میشود. در سال ۱۸۴۰، این اثر را جیمز ژول از نظر ریاضی مورد مطالعه قرار داد. یکی از مهمترین اکتشافات مرتبط با جریان بهطور اتفاقی در سال ۱۸۲۰ به وسیله هانس کریستین اورستد صورت گرفت. این اتفاق زمانی روی داد که هنگام آماده کردن سخنرانی خود، او مشاهده کرد که جریان در یک سیم سوزن قطبنما را به حرکت درمیآورد. او الکترومغناطیس را که یک تعامل اساسی بین الکتریسیته و مغناطیس بود، کشف کرد. میزان انتشار الکترومغناطیسی تولید شده به وسیله قوس الکتریکی برای تولید تداخل الکترومغناطیسی کافیست که میتواند برای صدمه دیدن وسایل مجاور، مضر باشد.
در وسایل مهندسی یا خانگی جریان به دو دسته مستقیم و متناوب تقسیم میشود. این واژهها به تغییرات جریان در بازه زمانی اشاره دارد. جریان مستقیم، برای مثال از یک باتری گرفته میشود و بیشتر لوازم الکترونیکی بدان نیاز دارند. این جریان یک سویه بوده که از قسمت مثبت مدار به قسمت منفی جریان مییابد. اگر این جریان به وسیله الکترونها حمل شود، جهت جریان در خلاف جهت گفته شده خواهد بود. جریان متناوب جریانیست که بهطور مکرر جهت جریانش تغییر میکند. این تغییر اغلب به شکل یک موج سینوسی است. بنابرین، جریان متناوب دارای پالس عقب و جلو بوده و در یک رسانا بدون حرکت بارها جریان تولید میکند. ارزش میانگین زمانی یک جریان متناوب صفر است، اما این جریان انرژی را در یک مسیر میرساند و سپس تغییر جهت میدهد. جریان متناوب تحت تأثیر ویژگیهای الکتریکی در شرایط پایدار جریان مستقیم، مانند القاوری و ظرفیت خازنی قرار میگیرد. این ویژگیها زمانی مهم میشوند که شدت جریان گذرا باشد.
میدان الکتریکی
مفهوم میدان الکتریکی توسط مایکل فارادی مطرح شد. میدان الکتریکی در اطراف جسم باردار شکل میگیرد و به تمام ذرات باردار درون میدان نیرو وارد میکند. میدان الکتریکی بین دو بار، مشابه میدان جاذبه بین دو جرم عمل میکند و مانند آن در فضای بینهایت گسترش میباید و یک رابطه مجذور معکوس با فاصله نشان میدهد. اما، یک فرق اساسی در این بین وجود دارد. میدان جاذبه همیشه در نقش جذبکننده عمل میکند و میکوشد تا دو جسم را به یکدیگر برساند، در حالی که میدان الکتریکی میتواند هم سبب جذب شود و هم دفع. از آن جا که اجسام بزرگ مانند سیارهها دارای بار خالص نیستند، اغلب میدان الکتریکی در اطراف آنها صفر است؛ لذا با وجود اینکه نیرو جاذبه بسیار ضعیفتر است، در گیتی نیروی غالب بهشمار میآید.
میدان الکتریکی بهطور عمومی در فضا متغیر است و شدت آن در هر نقطه با نیرویی مشخص میشود که به وسیله هر بار اندک ثابتی احساس میگردد. بار فرضی که ذره آزمون نام دارد، بسیار کوچک است تا میدان الکتریکی آن با میدان الکتریکی اصلی تداخل نداشته باشد و همچینی ثابت است تا از تأثیر میدانهای مغناطیسی جلوگیری کند. از آن جا که میدان الکتریکی با واحد نیرو شناسایی میشود، و نیرو نیز یک بردار اقلیدسی است، در نتیجه یک میدان مغناطیسی یک بردار است که هم شدت دارد و هم مسیر. در واقع این یک میدان برداری است.
مطالعه میدان الکتریکی حاصل از بارهای ثابت الکتریسیته ساکن نام دارد. میدان به وسیله مجموعهای از خطوط فرضی نمایش داده میشود که در هر نقطه از میدان مسیر آن را نمایش میدهند. این مفهوم به وسیله فارادی مطرح شد، که واژه خطوط میدانی که او بیان کرده بود، هنوز نیز کاربرد دارد. خطوط میدان مسیرهایی هستند که یک بار مثبت نقطهای هنگامی که بدان نیرو وارد میشود، آن مسیرها را طی میکند. به هر حال، آنها یک مفهوم ذهنی هستند و واقعیت فیزیکی ندارند و میدان به فضای بین خطوط نفوذ دارد. خطوط میدان ناشی از بارهای ساکن چند ویژگی کلیدی دارند: اولاً، آنها از بارهای مثبت سرچشمه میگیرند و به بارهای منفی ختم میشوند. ثانیاً، باید با زاویهای قایم وارد اجسام رسانا شوند، ثالثاً، هرگز یکدیگر را قطع نمیکنند.
یک جسم رسانای توخالی تمام بارش را در سطح خارجی خود نگه میدارد. در نتیجه میدان در تمام نقاط داخل جسم صفر است. این موضوع نقش اصلی را در قفس فاراده بازی میکند، این قفس یک پوسته فلزی رساناست که فضای داخلی خود را از تأثیرات الکتریکی خارجی جدا میکند. نقش الکتریسیته ساکن در طراحی آیتمهای وسایل ولتاژ بالا پر رنگ است. برای شدت میدان الکتریکی که یک جسم متوسط میتواند تحمل کند، محدودیتی وجود دارد. فراتر از این نکته، شکست الکتریکی رخ میدهد و قوس الکتریکی سبب ایجاد صاعقه بین دو قسمت باردار میشود. برای مثال، هوا تمایل دارد با عبور دادن قوس الکتریکی و ایجاد شکاف، شدت میدان الکتریکی را به بیش از ۳۰ کیلوولت بر سانتیمتر برساند. در شکافهای بزرگتر، شدت شکست ضعیفتر است و شاید یک کیلوولت در هر سانتیمتر باشد. مهمترین رویداد قابل مشاهده آن، آذرخش است، و زمانی اتفاق میافتد که با افزایش ستونهای هوا، بارها در ابرها جدا شوند و میدان الکتریکی هوا را افزایش دهند تا از حد تحمل، تجاوز کند. ولتاژ آذرخشهای بزرگ میتواند به بزرگی ۱۰۰ مگاولت باشد و انرژی به بزرگی ۲۵۰کیلووات ساعت را تخلیه کند.
شدت میدان تا حد زیادی تحت تأثیر اجسام رسانای نزدیک میدان قرار دارد و در اشیای نوک تیز تشدید میشود. از این موضوع در برقگیرها استفاده میشود که آذرخش، با استفاده از تیر نوک تیز مهار میشود تا ساختمان تحت محافظت، از صدمه دیدن در امان بماند.
پتانسیل الکتریکی
مفهوم پتانسیل الکتریکی با میدان الکتریکی ارتباط نزدیکی دارد. به بار کوچکی که در یک میدان الکتریکی قرار میگیرد، نیرو وارد میشود، و برای حرکت دادن این بار بر خلاف نیرویی که بدان وارد میشود، به کار نیازمندیم. پتانسیل الکتریکی در هر نقطه میزان انرژی لازم برای آوردن بار آزمون از فاصله بینهایت دور به آن نقطه است. واحد آن اغلب ولت است، و یک ولت، پتانسیلی است که با استفاده از یک ژول کار میتوان یک بار یک کولنی را از فاصله بینهایت دور به یک نقطه آورد. توصیح پتانسیل اگرچه رسمی است، کاربرد چندان ندارد، و مفهوم کاربردیتر، اختلاف پتانسیل الکتریکی است که به انرژی لازم برای به حرکت درآوردن بار آزمون بین دو نقطه مشخص گفته میشود. میدان الکتریکی درای ویژگی مخصوصی است و آن اینست که پایستار است، و این بدان معناست که به مسیری که بار میپیماید وابسته نیست: تمام مسیرهای بین دو نقطه به انرژی یکسانی نیاز دارند، و بنابرین یک مقدار منحصر به فرد برای اختلاف پتانسیل مورد نیاز است. یکای ولت به عنوان واحد اندازهگیری و توصیف اختلاف پتانسیل الکتریکی یا ولتاژ شناخته میشود.
برای اهداف کاربردی، بهتر است نقطهای را به عنوان مبدأ انتخاب کنیم و پتانسیل را با توجه به آن اندازهگیری و مقایسه کنیم. مبدأ خیلی مناسب میتواند زمین الکتریکی باشد، که فرض بر اینست که در تمام نقاط پتانسیلش یکسان است. نام نقطه مبدأ زمین الکتریکی است. زمین به عنوان منبع بی پایان از بارهای معادل مثبت و منفی فرض میشود و به همین دلیل از نظر الکتریکی خنثی و غیرقابل باردار شدن است.
پتانسیل الکتریکی یک کمیت اسکالر است، به همین دلیل تنها اندازه دارد و فاقد جهت میباشد. پتانسیل الکتریکی مشابه بلندی است: همانطور که یک جسم رها شده به دلیل اختلاف ارتفاع به وسیله میدان جاذبه به سمت پایین سقوط میکند، بار الکتریکی نیز به دلیل اختلاف پتانسیل ناشی از میدان مغناطیسی سقوط میکند. همانطور که در نقشههای موجود، خطوط کانتوری نقاط هم ارتفاع را نشان میدهند، میتوان مجموعه خطوطی که نقاط هم پتانسیل را نشان میدهند (با نام خطوط همپتانسیل شناخته میشود)، پیرامون یک جسم دارای بار الکترومغناطیسی رسم کرد. خطوط همپتانسیل با تمام خطوط نیرو زاویه قائم میسازند. همچنین آنها با سطح رسانای الکتریکی موازی اند، در غیر این صورت نیرویی تولید میشود که حاملان بار را به سطح پتانسیل میبرد.
میدان الکتریکی بهطور رسمی به عنوان نیرو وارده به واحد بار تعریف میشود، اما مفهوم پتانسیل اجازه استفاده از تعریفی مفیدتر و معادل را میدهد: میدان الکتریکی گرادیان مکانی پتانسیل الکتریکیست. واحدش اغلب ولت بر متر بوده، جهت بردار میدان، بزرگترین شیب پتانسیل و جایی است که خطوط همپتانسیل در نزدیکترین حالت قرار دارند.
آهنربای الکتریکی
کشف اورستد در سال ۱۸۲۱ در اینباره که پیرامون سیمهای حامل جریان الکتریکی میدان مغناطیسی وجود دارد، نشان داد که بین الکتریسیته و مغناطیس رابطهای مستقیم وجود دارد. بعلاوه، به نظر میرسید این فعل و انفعال با نیروی جاذبه و الکتریکی (دو نیروی طبیعت که تا آن زمان شناخته شده بودند)، متفاوت است. نیرویی که به سوزن قطبنما وارد میشد آن را نه به سیم حامل جریان نزدیک و نه آن را دور میکرد، اما با آن زاویه قائم میساخت. واژههای نسبتاً ناآشنای اورستد این بود: «تضاد الکتریکی به روشی چرخشی عمل میکند.» این نیرو همچنین به جهت جریان نیز بستگی داشت، یعنی اگر جهت جریان برعکس میشد، جهت نیرو نیز معکوس میگشت.
اورستد اکتشاف خود را بهطور کامل متوجه نشد، اما مشاهده کرد که آثار متقابل بودند: جریان به آهنربا نیرو و آهنربا به جریان نیرو وارد میکنند. بعدها آندره ماری آمپر این پدیده را بررسی کرد. او کشف کرد که دو سیم موازی حامل جریان به یکدیگر نیرو وارد میکنند. دو سیم که جهت جریانشان یکسان است، یکدیگر را جذب میکنند و دو سیم که جهت جریانشان مخالف هم است یکدیگر را دفع میکنند. این فعل و انفعال به واسطه میدان مغناطیسی ایجاد میشود که هر جریان تولید میکند و اساس تعریف جهانی آمپر را شکل میدهد.
رابطه بین میدانهای مغناطیسی و جریان بسیار مهم است، زیرا سبب شد تا مایکل فارادی در سال ۱۸۲۱، موتور الکتریکی را اختراع کند. موتور تکقطبی فارادی از یک آهنربا قرار گرفته داخل مخزن جیوه تشکیل میشد. جریان به وسیله سیمی آویزان از محور بالای آهنربا و غوطهور در جیوه برقرار میشد. آهنربا نیرویی مماسی بر سیم وارد میکرد و برای اینکه جریان برقرار شود، آن را پیرامون آهنربا میپیچاند.
آزمایشهای فارادی در سال ۱۸۳۱ نشان داد در سیمی که عمود بر یک میدان مغناطیسی حرکت میکند، بین دو نقطه نهایی آن اختلاف پتانسیل ایجاد میشود. آنالیزهای متعاقب این فرایند، که با نام القای الکترومغناطیسی مشهور است، او را قادر ساخت تا قانون مشهور القای فارادی را بیان کند، قانونی که مطابق آن اختلاف پتانسیل مدار بسته، متناسب با تغییرات شار مغناطیسی حلقه است. استفاده از این کشف، او را قادر ساخت تا اولین مولد الکتریکی را در سال ۱۸۳۱ اختراع کند، مولدی که انرژی مکانیکی دیسک مسی در حال چرخش را به انرژی الکتریکی تبدیل میکرد. دیسک فارادی هیچ استفاده عملی نداشت، ولی نشان داد که میتوان با استفاده از مغناطیس نیروی الکتریکی تولید کرد، امکانی که میتوان آن را با پی روی از کارهای او بهبود بخشید.
الکتروشیمی
توانایی واکنش شیمیایی برای تولید الکتریسیته و بهطور برعکس توانایی الکتریسیته برای پیش بردن واکنش شیمیایی استفادههای فراوانی دارد.
الکتروشیمی همواره بخش مهمی از الکتریسیته بودهاست. از زمان اختراع پیل ولتایی، پیلهای الکتروشیمیایی وارد انواع مختلف باتریها، پیلهای آبکاری و برقکافت شدهاست. با این روش آلومینیم در حجم بزرگ تولید شد، و انرژی بسیاری از وسایل قابل حمل با استفاده از پیلهای قابل شارژ تأمین شد.
مدارهای الکتریکی
یک مدار الکتریکی اتصالی داخلی از اجزای الکتریکی است تا بارهای الکتریکی در مسیر بسته به منظور هدفی معین جریان یابند.
اجزای یک مدار الکتریکی میتواند شکلهای مختلفی داشته باشد، که میتواند شامل عناصری چون مقاومتها، خازنها، کلیدها، ترانسفورماتورها وسایل الکترونیکی میباشد. مدارهای الکتریکی حاوی اجزای فعال به ویژه نیمرساناها میباشند و رفتاری غیر خطی نشان میدهند که نیازمند آنالیز پیچیدهای است. سادهترین اجزای الکتریکی آنهایی هستند که نامشان غیرفعال و خطی اند: اگرچه ممکن است بهطور موقت انرژی را ذخیره کنند، ولی شامل هیچ منبعی از آن نمیشوند و به تحریکها، پاسخهای خطی میدهند.
شاید مقاومت سادهترین عنصر غیرفعال مدار باشند: همانطور که نامش نشان میدهد، او در مقابل جریان مقاومت نشان میدهد و انرژی را به صورت گرما به هدر میدهد. مقاومت حاصل حرکت بار در یک رساناست: برای مثال، ر فلزات، مقاومت ناشی از برخورد بین الکترونها و یونهاست. قانون اهم قانون ابتدایی نظریه مدارها میباشد و بیان میکند که جریان گذرا از یک مقاومت، با اختلاف پتانسیل دو سر آن متناسب است. مقاومت بیشتر مواد در طیفهای مختلف دما و جریان تقریباً ثابت است؛ موادی که از این شرایط پیروی میکنند، مواد «اهمی» نام دارند. اهم، واحد مقاومت بوده و به افتخار گئورگ زیمون اهم انتخاب شدهاست و علامتش با توجه به حروف یونانی، به شکل Ω است. یک Ω مقاومتی است که در پاسخ به جریان یک آمپری، اختلاف پتانسیل یک ولتی ایجاد میکند.
خازن حاصل توسعه بطری لیدن است و وسیلهایست که میتواند بار را ذخیره کند، او بدین وسیله انرژی الکتریکی را در میدان حاصل ذخیره میکند. از دو صفحه رسانا ساخته شده که به وسیله یک عایق دیالکتریک از یکدیگر جدا شدهاند. در عمل، ورقههای فلزی نازک به یکدیگر چسبیدهاند تا سطح تماس در واحد حجم و در نتیجه ظرفیت خازنی را افزایش دهند. واحد ظرفیت خازن فاراد است، که بعد از مایکل فارادی این نام اختصاص داده شد و با علامت F نشان داده میشود: یک فاراد عبارتست از اختلاف پتانسیل یک ولتی حاصله به هنگام ذخیره یک کولن بار الکتریکی در خازن. یک خازن متصل به منبع تغذیه در ابتدا به این دلیل که بار الکتریکی انباشته میکند، جریانی ایجاد مینماید. این جریان رفته رفته با پر شدن خازن کم میشود و در انتها به صفر میرسد؛ لذا یک خازن جریان شرایط پایدار ایجاد نمیکند، بلکه مسیر آن را میبندد.
القاگر یک رساناست که اغلب به شکل سیم پیچ است و در میدان مغناطیسی حاصل از جریان عبوری انرژی ذخیره میکند. زمانی که جریان تغییر میکند، میدان مغناطیسی و همچنین ولتاژ بین دو سر رسانا نیز دچار تغییر و تحول میگردد. ولتاژ حاصله با مشتق زمانی جریان متناسب است. ثابت تناسب آندوکتانس نام دارد. واحد آندوکتانس هانری است که به افتخار جوزف هانری، هم دوره فارادی انتخاب شدهاست. یک هانری آندوکتانسی است که اگر جریان گذرا از آن القاگر در هر ثانیه یک آمپر تغییر کند، اختلاف پتانسیل یک ولتی را ایجاد میکند. از برخی جهات رفتار القاگر برعکس خازن است: القاگر به جریان نامتغیر اجازه میدهد اما در مقابل جریان در حال تغییر ایستادگی میکند.
توان الکتریکی
توان الکتریکی مقدار انرژی الکتریکی است که در واحد زمان به وسیله مدار الکتریکی جابجا میشود. واحد توان در دستگاه بینالمللی یکاها وات است. یک وات معادل یک ژول بر ثانیه است. توان الکتریکی مانند توان مکانیکی، سرعت انجام کار است. با واحد وات سنجیده و با حرف P نمایش داده میشود. توان الکتریکی تولید شده به وسیله یک جریان الکتریکی، برابر است با بار Q که در هر t ثانیه از اختلاف پتانسیل V عبور میکند.
در این رابطه Q بار الکتریکی با واحد کولن T زمان با واحد ثانیه I جریان الکتریکی با واحد آمپر V ولتاژ با واحد ولت تولید انرژی الکتریکی اغلب به وسیله مولد الکتریکی صورت میگیرد، اما این اتفاق میتواند به وسیله باتریهای شیمیایی یا سایر انواع متنوع منابع انرژی نیز اتفاق افتد. توان الکتریکی لازم برای کسب و کار و استفاده خانگی به وسیله صنعت نیرو تولید میشود. واحد فروش برق کیلووات ساعت (۳٫۶مگاژول) است که حاصل ضرب نیرو با واحد کیلووات در زمان با واحد ساعت است. شرکتهای برق، میزان الکتریسته مصرفی را به وسیله کنتور اندازهگیری میکنند، که انرژی الکتریکی مصرفی مشتریان را نمایش میدهد.
الکترونیک
الکترونیک با مدارهای الکتریکی در ارتباط است که شامل اجزای الکتریکی فعال مانند لامپهای خلأ، ترانزیستورها، دیودها و مدارهای مجتمع میشود و با تکنولوژیهای اتصال داخلی غیرفعال در ارتباط است. رفتار غیرخطی اجزای فعال و توانایی آنها در کنترل جریانهای الکترونی، سیگنالهای ضعیف را تقویت میکند و در پردازش اطلاعات، مخابرات و پردازش سیگنال استفاده گستردهای از الکترونیک صورت میگیرد. توانایی وسایل الکترونیک در عمل کردن به عنوان مدار امکان پردازش اطلاعات را فراهم میسازد. تکنولوژیهای اتصال داخلی مانند فیبرهای مدار چاپی، تکنولوژی بستهبندی الکترونیک، و سایر انواع متنوع وسایل ارتباطی، قابلیت مدار را کامل کرده و اجزای مخلوط را به شکل یک سامانه کارآمد تبدیل کردهاست.
الکترونیک از علم و تکنولوژی الکتریکی و الکترومکانیکی فاصله گرفتهاست، که با ژنراتور، توزیع، انتقال، ذخیره و تبدیل انرژی الکتریکی به سایر اشکال انرژی و برعکس، با استفاده از ابزاری چون سیمها، موتورهای الکتریکی، باتریها، کلیدها، رلهها، ترانسفورماتورها، مقاومتها و سایر اجزای غیرفعال است. این تمایز از سال ۱۹۰۶ و با اختراع ترایود به وسیله لی دفارست آغاز شد که تقویت سیگنالهای رادیویی و شنیداری ضعیف بدون ابزار غیر مکانیکی صورت گرفت. قبل از ۱۹۵۰ نام این رشته «تکنولوژی رادیویی» بود زیرا کاربرد اصلی آن در طراحی و تحلیل فرستندهها و گیرندههای رادیویی و لامپهای خلأ بود.
امروزه، بسیاری از وسایل الکترونیکی به منظور کنترل الکترونی از مواد نیمرسانا استفاده میکنند. مطالعه وسایل نیمرسانا و تکنولوژی مرتبط با آنها شاخهای با نام فیزیک حالت جامد ایجاد کردهاست، در حالی که طراحی و ساخت مدارهای الکتریکی برای حل مشکلات عملی در زیرشاخه مهندسی الکترونیک قرار دارد.
موج الکترومغناطیسی
کار فارادی و آمپر نشان داد که یک میدان مغناطیسی متغیر در زمان به عنوان منبع یک میدان الکتریکی عمل میکند و یک میدان الکتریکی متغیر در زمان منبع میدان مغناطیسی است. بنابرین، زمانی که یکی از این دو میدان در بازه زمانی تغییر میکنند، میدان دیگری ایجاد میشود. این پدیده ویژگیهای موج را داراست و بهطور طبیعی با نام تابش الکترومغناطیسی یاد میشود. در سال ۱۸۶۴، جیمز کلرک ماکسول، امواج الکترومغناطیسی را از نظر تئوری بررسی کرد. ماکسول مجموعهای از روابط را بیان کرد که قادر بودند ارتباط بین میدان الکتریکی، میدان مغناطیسی، بار الکتریکی و جریان الکتریکی را به روشنی نشان دهند. او به علاوه ثابت کرد که امواج، الزاماً با سرعت نور حرکت میکنند و بنابرین خود نور نیز شکلی از تابشهای الکترومغناطیس است. معادلات ماکسول، که نور، میدان و بار را یکپارچه میکند، یکی از بزرگترین نقاط عطف فیزیک تئوریست.
بنابرین، تلاش بسیاری از محققان، امکان استفاده از الکترونیک را برای تبدیل سیگنالها به جریان فرکانس بالای نوساندار فراهم ساخت، و به وسیله رساناهای دارای شکل مناسب، الکتریسیته اجازه ارسال و دریافت این سیگنالها را به وسیله امواج رادیویی در فاصلههای بسیار دور صادر کرد.
تولید و استفاده
تولید و انتقال
آزمایشهای تالس به وسیله میله کهربا اولین مطالعات پیرامون تولید انرژی الکتریکی بود. اگرچه این روش، که به اثر برق مالشی معروف است، میتواند اجسام سبک را بلند و جرقه تولید کند، بسیار ناموثر است. تا پیش از اختراع پیل ولتایی در قرن هجدهم، هیچ منبع الکتریسیته مداومی در دسترس نبود. پیل ولتایی و نسل مدرنش، باتریهای الکتریکی، انرژی شیمیایی را ذخیره میکنند و در هنگام نیاز آن را به شکل انرژی الکتریکی در دسترس قرار میدهند. باتری یک منبع برق همهکاره و رایج است که برای بسیاری از وسایل مناسب میباشد، ولی ذخیره انرژی آن محدود است و زمانی که شارژش تمام میشود باید تعویض یا شارژ شود. برای تقاضاهای الکتریکی عظیم باید بهطور مداوم انرژی تولید و به وسیله خطوط انتقال رسانا، منتقل شود.
الکتریسیته، اغلب به وسیله مولدهای الکتریکی تولید میشود که با بخار حاصل از احتراق سوختهای فسیلی، یا گرما آزاد شده از رآکتورهای هستهای، یا سایر منابع انرژی مانند انرژی جنبشی حاصله از باد و جریان آب، به حرکت در میآیند. توربین بخار مدرن که در سال ۱۸۸۴ توسط چارلز آلگرنون پارسونز اختراع شد، امروزه با استفاده از منابع متنوع گرما، حدود ۸۰ درصد توان الکتریکی جهان را تولید میکند. این مولدها هیچ شباهتی به مولد تکقطبی فارادی که در سال ۱۸۳۱ اختراع شد، ندارند، اما هنوز از قانون الکترومغناطیسی او پیروی میکنند که میگوید رسانایی که به میدان مغناطیسی متغیری متصل است بین دوسرش، اختلاف پتانسیل تولید میشود. اختراع ترانسفورماتور در اواخر قرن نوزدهم، بدان معنا بود که نیروی الکتریکی میتواند با ولتاژی بالاتر ولی جریانی کمتر انتقال یابد. انتقال بهینه انرژی الکتریکی بدین معنا بود که میتوان الکتریسیته را در یک نیروگاه مرکزی تولید کرد که از صرفهجویی در مقیاس سود میبرد و به فاصلههای نسبتاً دوری فرستاده میشود.
از آنجا که انرژی الکتریکی را نمیتوان به اندازهای ذخیره کرد که قادر به پاسخ گویی تقاضا در سطح ملی بود، باید در هر زمان، به اندازهای که لازم است، تولید شود. این خود نیازمند اینست که صنعت الکتریسیته پیشبینی دقیقی از بارگذاری الکتریکی داشته و ارتباط پایداری با نیروگاههای خود برقرار کنند. باید مقدار معینی از الکتریسیته تولید شده، همواره ذخیره شود تا برای مواقع اضطراری و بروز اختلالات، تکیهگاهی محکم وجود داشته باشد.
با مدرنیته یک ملت و بهبود اقتصاد آن، تقاضا برای الکتریسیته با سرعت بالایی افزایش مییابد. در ایلات متحده آمریکا، تقاضای برق در سه دهه اول سده بیستم، سالانه ۱۲ درصد افزایش مییافت. اکنون کشورهای نو ظهور در عرصه اقتصاد، مانند چین و هند، چنین افزایشی را تجربه میکنند. بهطور تاریخی، افزایش تقاضای الکتریسیته، از تقاضا برای سایر شکلهای انرژی پیش افتادهاست.
نگرانیهای محیطی از تولید الکتریسیته منجر به افزایش تمرکزها برای استفاده از منابع تجدیدپذیر، به خصوص توان بادی و انرژی آبی شدهاست. اگرچه میتوان انتظار داشت که تأثیر محیطی وسایل مختلف الکتریکی ادامه مییابد، شکل نهایی آن تقریباً پاک است.
الکتریسیته یک راه بسیار مناسب برای انتقال انرژی است و از آن استفادههای فراوان و در حال افزایشی اتفاق افتادهاست. اختراع لامپ رشتهای در دهه ۱۸۷۰ سبب شد که نورپردازی به یکی از عمومیترین کاربردهای توان الکتریکی تبدیل شود. اگرچه برقرسانی خطرات خاص خود را دارد، جایگزین کردن شعلههای عریان چراغ نفتی با آن، بهطور چشمگیری حوادث آتشسوزی در خانهها و کارخانهها را کاهش داد. امکانات عمومی با هدف روبه رشد قرار دادن بازار نور پردازی، در بسیاری از شهرها برقرار شد.
تأثیر گرمای ژولی که در لامپهای رشتهای وجود دارد استفادههای مستقیم بیشتری در گرمایش الکتریکی دارد. درحالی که پرکاربرد و قابل کنترل است، میتواند مفید نیز باشد، زیرا بیشتر تولید الکتریکی نیازمند تولید گرما در نیروگاهها هستند. تعدادی از کشورها مانند دانمارک، در زمینه محدود کردن و ممنوعیت استفاده از گرمایش الکتریکی در ساختمانها نو ساز قانونی وضع کردهاند. الکتریسیته یک منبع انرژی پر کاربرد برای خنکسازی، و تهویه مطبوع است که بخش در حال توسعهای برای تقاضای الکتریسیته به نظر میرسد و تأثیرات آن سبب شدهاست که صنعت برق به فکر تأمین این نیاز برآید.
الکتریسیته در مخابرات و تلگراف الکتریکی کاربرد دارد که در سال ۱۸۳۷ توسط ویلیام فوترگیل کوکه و چارلز ویتستون به نمایش درآمد و یکی از اولین کاربردها بود. با ساخت اولین تلگراف بینقارهای و پس از آن کابل تلگراف بینقارهای در دهه ۱۸۶۰، الکتریسیته جهان را قادر ساخت تا در مدت چند ثانیه ارتباط برقرار کند. تکنولوژی فیبر نوری و ماهواره مخابراتی بهطور مشترک بازار سیستم برقراری ارتباط را به دست گرفتهاند، اما به نظر میرسد الکتریسیته بخش اساسی این فرایند باقی بماند.
اثر الکترومغناطیس بهطور آشکار در موتور الکتریکی به کار میرود، که ابزاری مؤثر و پاک برای توان محرک فراهم میآورد. یک موتور بی حرکت مانند وینچ، به راحتی مقداری نیرو فراهم میآورد، اما موتوری که با کاربرد برق حرکت میکند، مانند یک ماشین برقی، باید یا یک منبع توان مانند باتری را حمل کند یا جریان را از یک اتصال کشویی مانند یک شاخک برقرسان دریافت کند.
وسایل الکترونیک از ترانزیستور، که احتمالاً یکی از مهمترین اختراعات قرن بیستم است، و یک بلوک بنیادین مدار تمام مدرن، استفاده میکنند. یک مدار مجتمع مدرن میتواند شامل چند میلیارد ترانزیستور کوچک شده در محلی به مساحت چند سانتیمتر مربع باشد.
همچنین از الکتریسیته برای تأمین سوخت حمل و نقل عمومی شامل اتوبوسها و قطارهای برقی استفاده میشود.
برق و جهان طبیعی
اگر به بدن انسان ولتاژی اعمال کنیم باعث میشود که جریان الکتریکی از بافتهای آن عبور کند، با اینکه رابطهٔ بین اینها غیر خطی است ولی با افزایش ولتاژ جریان عبوری نیز زیاد میشود. آستانه درک انسان با توجه به فرکانس و مسیر عبوری جریان متغیر است ولی برای فرکانس اصلی (در آسیا ۶۰ هرتز) بین ۰٫۱ تا ۱ میلیآمپر متغیر است. با این وجود یک جریان ضعیف در حد میکروآمپر در شرایط مشخصی به عنوان الکترولرزه توسط بدن تشخیص داده میشود. اگر جریان خیلی قوی باشد موجب انقباض ماهیچهها، تارلرزه قلب و سوختگی بافت میشود. هیچ مشخصه ظاهری برای یک جسم هادی حاوی الکتریسیته وجود ندارد در نتیجه برق یک خطر منحصربفرد است. دردی که توسط یک شوک الکتریکی ایجاد میشود میتواند شدید باشد، این دلیل منجر شدهاست که در زمانهای مختلف این کار به عنوان یک روش برای شکنجه استفاده شود. به مرگی که ناشی از شوک الکتریکی باشد مرگ در اثر برق اطلاق میشود. در حال حاضر استفاده از این عبارت جز در بعضی حوزههای قضایی، که در آنها به معنی اعدام است، کاهش یافتهاست.
پدیدههای الکتریکی در طبیعت
الکتریسیته توسط انسان اختراع نشدهاست و در طبیعت به شکلهای مختلف وجود دارد، یک نمود همیشگی آن آذرخش است. بسیاری از تعاملات آشنا در حد ماکروسکوپیک مانند حس لامسه، اصطکاک و پیوندهای شیمیایی ناشی از تعاملات بین میدانهای الکتریکی در مقیاس اتمی هستند. تصور میشود که میدان مغناطیسی زمین توسط یک دینام طبیعی ناشی از جریانهای دوار در مرکز سیاره ایجاد شدهاست. کریستالهای مشخصی مانند کوارتز و شکر زمانی که تحت فشار قرار میگیرند بین دو طرف خود اختلاف پتانسیل ایجاد میکنند. این پدیده که اثر فشاربرقی نام دارد و از واژه یونانی piezein به معنی فشار گرفته شدهاست، در سال ۱۸۸۰ توسط پیر کوری و ژاکس کوری کشف شدهاست. این اثر دوطرفه است یعنی اگر یک ماده پیزوالکتریک را در میدان الکتریکی قرار دهیم ابعاد آن به مقدار بسیار ناچیز تغییر میکند.
بعضی از موجودات زنده مانند کوسهها توانایی این را دارند که تغییرات میدان الکتریکی را حس کنند و به آن پاسخ دهند، این توانایی را دریافت الکتریسیته گویند، گونههای دیگری وجود دارند که قادرند برای شکار یا دفاع از خود ولتاژ ایجاد کنند به این توانایی پیدایش الکتروزیستی گویند. راسته برقماهیسانان، که معروفترین آنها مارماهی الکتریکی است، قادرند با ایجاد یک ولتاژ قوی توسط سلولهای تغییریافتهٔ ماهیچه موسوم به الکتروسلول، طعمه خود را تشخیص یا بیحس کنند. همهٔ حیوانات اطلاعات را در امتداد غشای سلولی توسط تپشهای (پالسهای) ولتاژ انتقال میدهند که به آن پتانسیل عمل میگویند، که وظیفه آن شامل ایجاد ارتباط بین ماهیچهها و یاختههای عصبی توسط دستگاه عصبی است. شوک الکتریکی این سیستم را تحریک میکند و موجب انقباض ماهیچهها میشود. پتانسیل عمل در بعضی گیاهان مسئول فعالیتهای هماهنگی است.
درک فرهنگی
در سال ۱۸۵۰، ویلیام اوارت گلدستون از مایکل فارادی پرسید، چرا الکتریسیته ارزشمند است. فارادی پاسخ داد، «یک روز شما مالیات آن را خواهید پرداخت.»
در قرن ۱۹ام و اوایل قرن ۲۰ام، حتی در جهان صنعتی غرب، هنوز الکتریسیته به بخشی از زندگی روزمره مردم تبدیل نشده بود. فرهنگ عامه زمان، اغلب آن را در قالب نیرویی اسرارآمیز و شبه جادویی به تصویر میکشید که قادر بود زندگی را نابود و مرده را زنده کند یا حتی قوانین طبیعت را به زانو درآورد. این گرایش با آزمایشهای لوییجی گالوانی در سال ۱۷۷۱ ایجاد شد که در آن پاهای قورباغههای مرده با به کار بردن الکتریسته حیوانات به حرکت درآمد. اندکی پس از کار گالوانی، «تجدید حیات» یا احیای مجدد افراد ظاهراً مرده یا غرق شده، در ادبیات پزشکی گزارش شد. این نتایج با مری شلی به هنگام انتشار فرانکنشتاین (۱۸۱۹)، مشهور شدند، اگرچه او واژهٔ تجدید حیات را به هیولا نسبت نداد. تجدید حیات هیولاها با استفاده از الکتریسیته، بعداها به موضوعی ترسناک در فیلمهای ژانر وحشت تبدیل شد.
با افزایش آشنایی عمومی با الکتریسیته به عنوان نیروی حیاتی انقلاب صنعتی دوم، صاحبانش در نقشهای مثبتی، مانند کارکنان در «مرگ انگشت در پایان دستکشهایشان مانند قطعه قطعه کردن سیمهای زندگی» در شعر پسران مارتا از رودیارد کیپلینگ در سال ۱۹۰۷ ظاهر شدند. ماشینهای دارای قدرت الکتریکی از تمام انواع، در داستانهای ماجراجویانهای چون داستانهای ژول ورن و تماس سویفت برجسته شدند. اربابان الکتریسیته، چه تخیلی و چه واقعی، از جمله دانشمندانی چون توماس ادیسون، چارلز آلگرنون پارسونز، و نیکولا تسلا، به عنوان جادوگران، علم میان مردم مشهور شدند. با از بین رفتن تازگی الکتریسیته و تبدیل شدن به ابزاری واجب برای زندگی روزمره در نیمه دوم قرن بیستم، تنها زمانی نیازمند توجه به فرهنگ عامه میشد که جریان قطع میگشت. افرادی که جریان را برقرار میکنند، مانند قهرمانان بینام و نشان آهنگ ویچیتا لینمان (۱۹۶۸)، اثر جیمی وب، هنوز اغلب در هیبت قهرمانانه و جادوگرانه خودنمایی مینمایند.
منبع : ویکی پدیا
بیشتر بخوانید :